Advertisements
Advertisements
प्रश्न
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
उत्तर
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x5 + `underline((-5)/3)` x3 + 5x + c
Explanation:
`"I" = int (5(x^6 + 1))/(x^2 + 1) "dx"`
`"I" = 5 int ((x^2)^3 + (1)^3)/("x"^2 + 1) "dx"`
`"I" = 5int((cancel("x"^2 + 1))("x"^4 - "x"^2 + 1))/(cancel("x"^2 + 1)) "dx" ...[a^3 + b^3 = (a + b)(a^2 - ab + b^2)]`
`"I" = 5 int ("x"^4 - "x"^2 + 1)` dx
`"I" = 5 ("x"^5/5 - "x"^3/3 + "x") + c ...[int "x"^"n" "dx" = "x"^("n" + 1)/("n" + 1)]`
`"I" = "x"^5 - 5/3"x"^3 + 5"x"` + c
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Integrate the functions:
`(1+ log x)^2/x`
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
`int logx/(log ex)^2*dx` = ______.
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int (logx)^2/x dx` = ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate `int 1/(x(x-1))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int(1+x+x^2/(2!))dx`