Advertisements
Advertisements
प्रश्न
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
विकल्प
`(-1)/"x + 1"` + c
`((-1)/"x + 1")^5` + c
log(x + 1) + c
log |x + 1|5 + c
उत्तर
`(-1)/"x + 1"` + c
Explanation:
= `int ("x + 1")^3/("x + 1")^5` dx
∵ (a + b)3 = a3 + 3a2b + 3ab2 + b3
(x + 1)3 = x3 + 3x2 + 3x + 1
= `1/((x + 1)^2) dx`
= `int (x + 1)^-2 . dx`
= `(x + 1)^(-2 + 1)/-2 + 1 + c`
= `(x + 1)^-1/-1 + c`
= `(-1)/(x + 1) + c`
`= (-1)/"x + 1"` + c
APPEARS IN
संबंधित प्रश्न
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x:
sin (log x)
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int (sinx)/(1 + sin x) "d"x`
`int sin4x cos3x "d"x`
∫ log x · (log x + 2) dx = ?
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
`int(1-x)^-2 dx` = ______
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
The value of `inta^x.e^x dx` equals