हिंदी

∫cos3x dx = ______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int cos^3x  dx` = ______.

विकल्प

  • `1/12 sin 3x + 3/4 sin  x + c`

  • `1/12 sin 3x + 1/4 sin x + c`

  • `1/12 sin 3x - 3/4 sin x + c`

  • `1/12 sin 3x - 1/4 sin x + c`

MCQ
रिक्त स्थान भरें

उत्तर

`int cos^3x  dx` = `underlinebb(1/12 sin  3x + 3/4 sin  x + c)`.

Explanation:

`int cos^3x . dx`

cos 3A = 4 cos3 A – 3 cos A

I = `int 1/4 (cos 3x + 3 cos x) . dx`

= `1/4 (sin 3x . 1/3 + 3 . sin x) + c`

= `1/12 sin 3x + 3/4 sin x + c`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Official

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int "x" * "e"^"2x"` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int x^x (1 + logx)  "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int sec^6 x tan x   "d"x` = ______.


`int ("d"x)/(x(x^4 + 1))` = ______.


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int 1/(sinx.cos^2x)dx` = ______.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int1/(x^2+4x-5) dx`


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate `int 1/(x(x-1)) dx`


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×