Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\left( \frac{x - 1}{x^2} \right) e^x dx = \int\left( \frac{x}{x^2} - \frac{1}{x^2} \right) e^x dx\]
\[ = \int\left( \frac{1}{x} - \frac{1}{x^2} \right) e^x dx\]
\[\text{ Consider,} f\left( x \right) = \frac{1}{x},\text{ then f}^ \left( x \right) = - \frac{1}{x^2}\]
\[\text{ Thus , the given integrand is of the form e}^x \left[ f\left( x \right) + f^ \left( x \right) \right] . \]
\[\text{ Therefore, }\int\left( \frac{x - 1}{x^2} \right) e^x dx = \frac{1}{x} e^x + C\]
\[\text{ Hence,} f\left( x \right) = \frac{1}{x} .\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
`int logx/(log ex)^2*dx` = ______.
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
`int(log(logx))/x "d"x`
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int(1+x+x^2/(2!))dx`