हिंदी

I F ∫ ( X − 1 X 2 ) E X D X = F ( X ) E X + C , T H E N W R I T E T H E V a L U E O F F ( X ) . - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]
योग

उत्तर

\[\int\left( \frac{x - 1}{x^2} \right) e^x dx = \int\left( \frac{x}{x^2} - \frac{1}{x^2} \right) e^x dx\]
\[ = \int\left( \frac{1}{x} - \frac{1}{x^2} \right) e^x dx\]
\[\text{ Consider,} f\left( x \right) = \frac{1}{x},\text{  then f}^ \left( x \right) = - \frac{1}{x^2}\]
\[\text{ Thus , the  given  integrand  is  of  the form e}^x \left[ f\left( x \right) + f^ \left( x \right) \right] . \]
\[\text{ Therefore, }\int\left( \frac{x - 1}{x^2} \right) e^x dx = \frac{1}{x} e^x + C\]
\[\text{ Hence,} f\left( x \right) = \frac{1}{x} .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Very Short Answers [पृष्ठ १९८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Very Short Answers | Q 56 | पृष्ठ १९८

संबंधित प्रश्न

Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


`int logx/(log ex)^2*dx` = ______.


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


`int(log(logx))/x  "d"x`


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate:

`int sin^2(x/2)dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int1/(x(x-1))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×