Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
उत्तर
Let I = `int "dx"/(4"x"^2 - 1)`
`= 1/4 int "dx"/("x"^2 - 1/4)`
`= 1/4 int "dx"/("x"^2 - (1/2)^2)`
`= 1/4 xx 1/(2 xx 1/2) log |("x" - 1/2)/("x" + 1/2)|` + c
∴ I = `1/4` log `|("2x" - 1)/("2x" + 1)|` + c
Alternate Method:
Let I = `int "dx"/(4"x"^2 - 1) = int "dx"/((2"x"^2) - (1)^2)`
`= 1/(2 xx 1) xx 1/2 log |("2x" - 1)/("2x" + 1)|` + c
∴ I = `1/4` log `|("2x" - 1)/("2x" + 1)|` + c
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
`int (log x)/(log ex)^2` dx = _________
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int(5x + 2)/(3x - 4) dx` = ______
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
`int secx/(secx - tanx)dx` equals ______.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate `int(1+x+x^2/(2!))dx`