Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
उत्तर
Let I = `int "dx"/(4"x"^2 - 1)`
`= 1/4 int "dx"/("x"^2 - 1/4)`
`= 1/4 int "dx"/("x"^2 - (1/2)^2)`
`= 1/4 xx 1/(2 xx 1/2) log |("x" - 1/2)/("x" + 1/2)|` + c
∴ I = `1/4` log `|("2x" - 1)/("2x" + 1)|` + c
Alternate Method:
Let I = `int "dx"/(4"x"^2 - 1) = int "dx"/((2"x"^2) - (1)^2)`
`= 1/(2 xx 1) xx 1/2 log |("2x" - 1)/("2x" + 1)|` + c
∴ I = `1/4` log `|("2x" - 1)/("2x" + 1)|` + c
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Evaluate: `int 1/(x(x-1)) dx`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int secx/(secx - tanx)dx` equals ______.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate `int1/(x(x - 1))dx`