Advertisements
Advertisements
प्रश्न
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
उत्तर
`int (1)/sqrt(x^2 + 8x - 20).dx`
= `int (1)/(sqrt((x^2 + 8x + 16) - 16 - 20)).dx`
= `int (1)/(sqrt((x + 4)^2 - 36)).dx`
= `int (1)/(sqrt((x + 4)^2 - (6)^2)).dx`
= `log|(x + 4) + sqrt((x + 4)^2 - (6)^2)| + c`
= `log|(x + 4) + sqrt(x^2 + 8x - 20)| + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
cot x log sin x
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of
The value of \[\int\frac{1}{x + x \log x} dx\] is
`int "dx"/(9"x"^2 + 1)= ______. `
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : tan2x dx
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
`int logx/(log ex)^2*dx` = ______.
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int (3"x"^2 - 5)^2` dx
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: `int "e"^sqrt"x"` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int 1/(xsin^2(logx)) "d"x`
`int cot^2x "d"x`
`int x/(x + 2) "d"x`
`int(log(logx))/x "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int (7x + 9)^13 "d"x` ______ + c
`int (1 + x)/(x + "e"^(-x)) "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int (cos x)/(1 - sin x) "dx" =` ______.
`int 1/(sinx.cos^2x)dx` = ______.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int 1/(x(x-1)) dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`