Advertisements
Advertisements
प्रश्न
Find : `int(x+3)sqrt(3-4x-x^2dx)`
उत्तर
`I=int(x+3)sqrt(3-4x-x^2)dx`
Let (x+3)= `Ad/dx(3-4x-x^2)+B `
⇒ x+3=A(-2x-4)+B
⇒ x+3 = -2Ax-4A +B
∴ -2A=1
⇒A =`1/2`
-4A+B=3
⇒ `-4(-1/2)+B=3`
⇒ B =1
`:.I=int[-1/2d/dx(3-4x-x^2)+1]sqrt(3-4x-x^2dx)`
`=1/2intd/dx(3-4x-x^2)sqrt(3-4x-x^2)dx+intsqrt(3-4x-x^2-4+4)dx`
`=1/2((3-4x-x^2)^(3/2)/(3/2))+intsqrt(7-(x+2)^2)dx`
`=(3-4x-x^2)^(3/2)/3+(x+2)/2sqrt(7-(x+2)^2)+7/2sin^(-1)((x+2)/sqrt7)+C`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int (sin4x)/(cos 2x) "d"x`
`int cot^2x "d"x`
`int(log(logx))/x "d"x`
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
`int x^3 e^(x^2) dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`