मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following integrals : ∫3x+42x2+2x+1.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`

बेरीज

उत्तर

Let I = `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`

Let 3x + 4 = `"A"[d/dx (2x^2 + 2x + 1)\ + "B"`   ...(i)

3x + 4 = A(4x + 2) + B
∴ 3x + 4 = (4A)x + (2A + B)
Consider,
4A = 3 and 2A + B = 4

∴ A = `(3)/(4) and 2(3/4) + "B"` = 4

∴ B = `4- 3/2`

∴ B = `8 - 3/2`

∴ B = `(5)/(2)`

From (i),

(3x + 4) = `3/4 d/dx (2x^2 + 2x + 1) + 5/2`   ...(ii)

The required integral is, 

I = `int ((3/4.d/dx (2x^2 + 2x + 1) + 5/2)/(sqrt(2x^2 + 2x + 1))dx`

I = `3/4 int (d/dx (2x^2 + 2x + 1))/(sqrt(2x^2 + 2x + 1)) dx + 5/2 int 1/ (sqrt(2x^2 + 2x + 1))dx`

I = `3/4 . 2 . sqrt(2x^2 + 2x + 1) + 5/2 . 1/sqrt2 int 1/sqrt(x^2 + x + 1/2)dx + c_1`  ...`int(f'(x))/sqrtf(x)dx = 2 sqrtf(x) + c`

I = `3/2 sqrt(2x^2 + 2x + 1) + 5/(2sqrt2) int 1/sqrt((x^2 + x + 1/4) + 1/2 - 1/4)dx + c_1` 

I = `3/2 sqrt(2x^2 + 2x + 1) + 5/(2sqrt2) int 1/ sqrt((x + 1/2)^2 + (1/2)^2)dx + c_1`

I = `3/2 sqrt(2x^2 + 2x + 1) + 5/(2sqrt2) log |(x + 1/2) + sqrt((x + 1/2)^2 + (1/2)^2)| + c_1 + c_2`

I = `3/2 sqrt(2x^2 + 2x + 1) + 5/(2sqrt2) log |(x + 1/2) + sqrt(x^2 + x + 1/2)| + c`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (C) [पृष्ठ १२८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (C) | Q 1.4 | पृष्ठ १२८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Evaluate :`intxlogxdx`


Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`1/(1 - tan x)`


Integrate the functions:

`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals : `int cos^2x.dx`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate the following : `int (logx)2.dx`


`int logx/(log ex)^2*dx` = ______.


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


Evaluate: `int "x" * "e"^"2x"` dx


Evaluate: `int log ("x"^2 + "x")` dx


Evaluate: `int "e"^sqrt"x"` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int sqrt(1 + sin2x)  "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int (7x + 9)^13  "d"x` ______ + c


`int(5x + 2)/(3x - 4) dx` = ______


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int cos^3x  dx` = ______.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate `int(1+ x + x^2/(2!)) dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate `int 1/("x"("x" - 1)) "dx"`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×