Advertisements
Advertisements
प्रश्न
Evaluate: `int log ("x"^2 + "x")` dx
उत्तर
Let I = `int log ("x"^2 + "x")` dx
`= int log ("x"^2 + "x") * 1 * "dx"`
`= log ("x"^2 + "x") int 1 * "dx" - int {"d"/"dx" log ("x"^2 + "x") int 1 * "dx"}`dx
`= log ("x"^2 + "x") * "x" - int 1/("x"^2 + "x") * (2"x" + 1) * "x" * "dx"`
`= "x" * log ("x"^2 + "x") - int 1/("x"("x + 1")) * (2"x" + 1) * "x" * "dx"`
`= "x" * log ("x"^2 + "x") - int("2x + 1")/("x + 1")`dx
`= "x" * log ("x"^2 + "x") - int((2"x" + 2) - 1)/("x + 1")` dx
`= "x" * log ("x"^2 + "x") - int[(2("x + 1"))/("x + 1") - 1/("x + 1")]` dx
`= "x" * log ("x"^2 + "x") - int[2 - 1/"x + 1"]` dx
`= "x" * [log("x"^2 + "x")] - (2"x" - log |"x + 1"|) + "c"`
∴ I = `"x" * [log("x"^2 + "x")] - 2"x" + log |"x + 1"|` + c
APPEARS IN
संबंधित प्रश्न
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Write a value of
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int (log x)/(log ex)^2` dx = _________
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate `int 1/(x(x-1))dx`