Advertisements
Advertisements
Question
Evaluate: `int log ("x"^2 + "x")` dx
Solution
Let I = `int log ("x"^2 + "x")` dx
`= int log ("x"^2 + "x") * 1 * "dx"`
`= log ("x"^2 + "x") int 1 * "dx" - int {"d"/"dx" log ("x"^2 + "x") int 1 * "dx"}`dx
`= log ("x"^2 + "x") * "x" - int 1/("x"^2 + "x") * (2"x" + 1) * "x" * "dx"`
`= "x" * log ("x"^2 + "x") - int 1/("x"("x + 1")) * (2"x" + 1) * "x" * "dx"`
`= "x" * log ("x"^2 + "x") - int("2x + 1")/("x + 1")`dx
`= "x" * log ("x"^2 + "x") - int((2"x" + 2) - 1)/("x + 1")` dx
`= "x" * log ("x"^2 + "x") - int[(2("x + 1"))/("x + 1") - 1/("x + 1")]` dx
`= "x" * log ("x"^2 + "x") - int[2 - 1/"x + 1"]` dx
`= "x" * [log("x"^2 + "x")] - (2"x" - log |"x + 1"|) + "c"`
∴ I = `"x" * [log("x"^2 + "x")] - 2"x" + log |"x + 1"|` + c
APPEARS IN
RELATED QUESTIONS
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`