Advertisements
Advertisements
Question
Evaluate: `int "e"^sqrt"x"` dx
Solution
Let I = `int "e"^sqrt"x"` dx
Put `sqrt"x"` = t
∴ x = t2
∴ dx = 2t dt
∴ I = `int "e"^"t" * "2t"`dt
`= 2 int "t" * "e"^"t" * "dt"`
`= 2 ["t" int "e"^"t" "dt" - int {"d"/"dx" ("t") int "e"^"t" * "dt"}"dt"]`
`= 2 ["t" * "e"^"t" - int 1 * "e"^"t" "dt"]`
`= 2("te"^"t" - "e"^"t")` + c
`= 2"e"^"t" ("t - 1")` + c
∴ I = `2"e"^sqrt"x" (sqrt"x" - 1)` + c
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`1/(1 - tan x)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Write a value of
Evaluate the following integrals : `int sin x/cos^2x dx`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
Evaluate `int (1+x+x^2/(2!))dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`