English

Evaluate the following integrals : ∫sinxcos2xdx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following integrals : `int sin x/cos^2x dx`

Sum

Solution

`int sin x/cos^2x dx = int(1/cosx)(sinx/cosx)dx`

= `intsec x tan x dx`
= sec x + c.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.1 [Page 102]

APPEARS IN

RELATED QUESTIONS

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

\[\int x \sin^3 x\ dx\]

 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x : sin5x.cos8x


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: `int 1/(sqrt("x") + "x")` dx


`int cos sqrtx` dx = _____________


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int logx/x  "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int cot^2x  "d"x`


`int x/(x + 2)  "d"x`


`int(log(logx))/x  "d"x`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int x^3"e"^(x^2) "d"x`


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate `int(1 + x + x^2/(2!))dx`


Evaluate `int1/(x(x - 1))dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×