Advertisements
Advertisements
Question
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Solution
Let `I = int (x^3 - 1)^(1/3) .x^5 dx`
On multiplying the numerator and denominator by 3
`I = 1/3 int (x^3 - 1)^(1/3).3x^2 . x^3` dx
Put x3 - 1 = t
3x2 dx = dt
Also, x3 = t + 1
∴ `I = 1/3 int t^(1/3) (t + 1) dt`
`= 1/3 [3/7 t ^(7/3) + 3/4 t^(4/3)] + C = 1/7 t^(7/3) + 1/4 t^(4/3) C`
`= 1/7 (x^3 - 1)^(7/3) + 1/4 (x^3 - 1)^(4/3) + C`
APPEARS IN
RELATED QUESTIONS
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int 1/(x(x-1)) dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate `int(3x^2 - 5)^2 "d"x`
`int x^3"e"^(x^2) "d"x`
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate `int (1)/(x(x - 1))dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`