English

Integrate the functions: (x3-1)13x5 - Mathematics

Advertisements
Advertisements

Question

Integrate the functions:

`(x^3 - 1)^(1/3) x^5`

Sum

Solution

Let  `I = int (x^3 - 1)^(1/3) .x^5 dx`

On multiplying the numerator and denominator by 3

`I = 1/3 int (x^3 - 1)^(1/3).3x^2 . x^3` dx

Put x3 - 1 = t 

3x2 dx = dt

Also, x3 = t + 1

∴ `I = 1/3 int t^(1/3) (t + 1) dt`

`= 1/3 [3/7 t ^(7/3) + 3/4 t^(4/3)] + C = 1/7 t^(7/3) + 1/4 t^(4/3)  C`

`= 1/7 (x^3 - 1)^(7/3) + 1/4 (x^3 - 1)^(4/3) + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.2 [Page 304]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.2 | Q 12 | Page 304

RELATED QUESTIONS

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate: `int 1/(x(x-1)) dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Evaluate: `int 1/(sqrt("x") + "x")` dx


Evaluate `int(3x^2 - 5)^2  "d"x`


`int x^3"e"^(x^2) "d"x`


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate `int (1)/(x(x - 1))dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×