Advertisements
Advertisements
प्रश्न
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
उत्तर
Let `I = int (x^3 - 1)^(1/3) .x^5 dx`
On multiplying the numerator and denominator by 3
`I = 1/3 int (x^3 - 1)^(1/3).3x^2 . x^3` dx
Put x3 - 1 = t
3x2 dx = dt
Also, x3 = t + 1
∴ `I = 1/3 int t^(1/3) (t + 1) dt`
`= 1/3 [3/7 t ^(7/3) + 3/4 t^(4/3)] + C = 1/7 t^(7/3) + 1/4 t^(4/3) C`
`= 1/7 (x^3 - 1)^(7/3) + 1/4 (x^3 - 1)^(4/3) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
sin x ⋅ sin (cos x)
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : tan5x
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int sqrt(1 + sin2x) "d"x`
`int (cos2x)/(sin^2x) "d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int (cos x)/(1 - sin x) "dx" =` ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
`int 1/(sin^2x cos^2x)dx` = ______.