Advertisements
Advertisements
प्रश्न
उत्तर
\[\int \sqrt{3 + 2x - x^2} \text{ dx}\]
\[ = \int \sqrt{3 - \left( x^2 - 2x \right)}\text{ dx}\]
\[ = \int \sqrt{3 - \left( x^2 - 2x + 1 - 1 \right)}\text{ dx}\]
\[ = \int \sqrt{4 - \left( x - 1 \right)^2}\text{ dx}\]
\[ = \int \sqrt{2^2 - \left( x - 1 \right)^2} \text{ dx} \left[ \because \int\sqrt{a^2 - x^2}\text{ dx} = \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \text{ sin }^{- 1} \frac{x}{a} + C \right]\]
\[ = \left( \frac{x - 1}{2} \right) \sqrt{2^2 - \left( x - 1 \right)^2} + \frac{2^2}{2} \sin^{- 1} \left( \frac{x - 1}{2} \right) + C\]
\[ = \frac{x - 1}{2}\sqrt{3 + 2x - x^2} + \sin^{- 1} \left( \frac{x - 1}{2} \right) + C\]
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
tan2(2x – 3)
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: ∫ |x| dx if x < 0
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int x^x (1 + logx) "d"x`
`int(log(logx))/x "d"x`
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
`int "cosec"^4x dx` = ______.
Evaluate:
`int sin^2(x/2)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int 1/(x(x-1)) dx`