मराठी

∫ √ 3 + 2 X − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]
बेरीज

उत्तर

\[\int \sqrt{3 + 2x - x^2} \text{ dx}\]
\[ = \int \sqrt{3 - \left( x^2 - 2x \right)}\text{ dx}\]
\[ = \int \sqrt{3 - \left( x^2 - 2x + 1 - 1 \right)}\text{ dx}\]
\[ = \int \sqrt{4 - \left( x - 1 \right)^2}\text{ dx}\]
\[ = \int \sqrt{2^2 - \left( x - 1 \right)^2} \text{ dx} \left[ \because \int\sqrt{a^2 - x^2}\text{ dx} = \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \text{ sin }^{- 1} \frac{x}{a} + C \right]\]
\[ = \left( \frac{x - 1}{2} \right) \sqrt{2^2 - \left( x - 1 \right)^2} + \frac{2^2}{2} \sin^{- 1} \left( \frac{x - 1}{2} \right) + C\]
\[ = \frac{x - 1}{2}\sqrt{3 + 2x - x^2} + \sin^{- 1} \left( \frac{x - 1}{2} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.28 [पृष्ठ १५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.28 | Q 1 | पृष्ठ १५४

संबंधित प्रश्‍न

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

tan2(2x – 3)


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: ∫ |x| dx if x < 0


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int x^x (1 + logx)  "d"x`


`int(log(logx))/x  "d"x`


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


`int "cosec"^4x  dx` = ______.


Evaluate:

`int sin^2(x/2)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate `int 1/(x(x-1)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×