Advertisements
Advertisements
Question
Solution
\[\int \sqrt{3 + 2x - x^2} \text{ dx}\]
\[ = \int \sqrt{3 - \left( x^2 - 2x \right)}\text{ dx}\]
\[ = \int \sqrt{3 - \left( x^2 - 2x + 1 - 1 \right)}\text{ dx}\]
\[ = \int \sqrt{4 - \left( x - 1 \right)^2}\text{ dx}\]
\[ = \int \sqrt{2^2 - \left( x - 1 \right)^2} \text{ dx} \left[ \because \int\sqrt{a^2 - x^2}\text{ dx} = \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \text{ sin }^{- 1} \frac{x}{a} + C \right]\]
\[ = \left( \frac{x - 1}{2} \right) \sqrt{2^2 - \left( x - 1 \right)^2} + \frac{2^2}{2} \sin^{- 1} \left( \frac{x - 1}{2} \right) + C\]
\[ = \frac{x - 1}{2}\sqrt{3 + 2x - x^2} + \sin^{- 1} \left( \frac{x - 1}{2} \right) + C\]
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`1/(x + x log x)`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
`int sqrt(1 + "x"^2) "dx"` =
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`