English

∫ √ 3 + 2 X − X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]
Sum

Solution

\[\int \sqrt{3 + 2x - x^2} \text{ dx}\]
\[ = \int \sqrt{3 - \left( x^2 - 2x \right)}\text{ dx}\]
\[ = \int \sqrt{3 - \left( x^2 - 2x + 1 - 1 \right)}\text{ dx}\]
\[ = \int \sqrt{4 - \left( x - 1 \right)^2}\text{ dx}\]
\[ = \int \sqrt{2^2 - \left( x - 1 \right)^2} \text{ dx} \left[ \because \int\sqrt{a^2 - x^2}\text{ dx} = \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \text{ sin }^{- 1} \frac{x}{a} + C \right]\]
\[ = \left( \frac{x - 1}{2} \right) \sqrt{2^2 - \left( x - 1 \right)^2} + \frac{2^2}{2} \sin^{- 1} \left( \frac{x - 1}{2} \right) + C\]
\[ = \frac{x - 1}{2}\sqrt{3 + 2x - x^2} + \sin^{- 1} \left( \frac{x - 1}{2} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.28 [Page 154]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.28 | Q 1 | Page 154

RELATED QUESTIONS

Integrate the functions:

`1/(x + x log x)`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


\[\int\sqrt{x - x^2} dx\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


`int sqrt(1 + "x"^2) "dx"` =


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×