English

Write a Value of ∫ X 2 Sin X 3 D X - Mathematics

Advertisements
Advertisements

Question

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]
Sum

Solution

    Let I = ∫  x2 sin x3 dx  

Let x3 = 
⇒ ​3x2  dxdt

\[\Rightarrow x^2 \text{ dx }= \frac{dt}{3}\]
\[ \therefore I = \frac{1}{3}\int \text{ sin  t  dt}\]
\[ = \frac{1}{3}\left[ - \cos\text{  t }\right] + C\]
\[ = - \frac{1}{3}\cos \text{ x}^3 + C \left( \because t = x^3 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Very Short Answers [Page 197]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Very Short Answers | Q 3 | Page 197

RELATED QUESTIONS

Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


`int (dx)/(sin^2 x cos^2 x)` equals:


\[\int\sqrt{x - x^2} dx\]

The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals : tan2x dx


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate `int 1/("x" ("x" - 1))` dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate `int 1/((2"x" + 3))` dx


`int logx/x  "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int (f^'(x))/(f(x))dx` = ______ + c.


Write `int cotx  dx`.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×