Advertisements
Advertisements
Question
Write a value of
Solution
Let I = ∫ x2 sin x3 dx
⇒ 3x2 dx = dt
\[\Rightarrow x^2 \text{ dx }= \frac{dt}{3}\]
\[ \therefore I = \frac{1}{3}\int \text{ sin t dt}\]
\[ = \frac{1}{3}\left[ - \cos\text{ t }\right] + C\]
\[ = - \frac{1}{3}\cos \text{ x}^3 + C \left( \because t = x^3 \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
`int (dx)/(sin^2 x cos^2 x)` equals:
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : tan2x dx
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate `int 1/("x" ("x" - 1))` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate `int 1/((2"x" + 3))` dx
`int logx/x "d"x`
`int 1/(xsin^2(logx)) "d"x`
`int (f^'(x))/(f(x))dx` = ______ + c.
Write `int cotx dx`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`