Advertisements
Advertisements
Question
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Solution
`int (sin4x)/(cos2x).dx`
= `int(2sin 2x cos 2x)/(cos2x).dx`
= `2int sin 2x .dx`
= `2(-(cos2x)/2) + c`
= – cos 2x + c.
APPEARS IN
RELATED QUESTIONS
Evaluate :`intxlogxdx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
cot x log sin x
Integrate the functions:
`1/(1 - tan x)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : sin5x.cos8x
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
`int logx/(log ex)^2*dx` = ______.
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate `int (5"x" + 1)^(4/9)` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int logx/x "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
`int x^3"e"^(x^2) "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int (f^'(x))/(f(x))dx` = ______ + c.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int sin^2(x/2)dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate:
`int sin^3x cos^3x dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int1/(x(x - 1))dx`