English

Evaluate the following integrals : ∫3cosx4sin2x+4sinx-1.dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`

Sum

Solution

Let I = `int (3cosx)/(4sin^2x + 4sinx - 1).dx`

Put sin x = t
∴ cosx dx = dt

∴ I = `int 3/(4t^2 + 4t - 1)dt`

I = `3/4 int 1/(t^2 + t - 1/4)dt`

I = `3/4 int 1/((t^2 + t + 1/4) - 1/4 - 1/4)dt`

I = `3/4 int 1/ ((t + 1/2)^2 - 1/2)dt`

I = `3/4 int 1/sqrt((t + 1/2)^2 - (1/sqrt2)^2)dt`

`[∵ int 1/(x^2 - a^2)dx = 1/(2a) log |(x - a)/(x + a)| + c]`

I = `3/4 xx 1/(2(1/sqrt2)) log |(t + 1/2 - 1/sqrt2)/(t + 1/2 + 1/sqrt2)| + c`

I = `3/(4sqrt2) log |(2sqrt2t + (2sqrt2)/2 - (2sqrt2)/sqrt2)/(2sqrt2t + (2sqrt2)/2 - (2sqrt2)/sqrt2)| + c`

I = `3/(4sqrt2) log |(2sqrt2t + sqrt2 - 2)/(2sqrt2t +sqrt2 + 2)| + c`

I = `3/(4sqrt2) log |(2sqrt2sin + sqrt2 - 2)/(2sqrt2sin +sqrt2 + 2)| + c`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (C) [Page 128]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Evaluate :`intxlogxdx`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

cot x log sin x


Integrate the functions:

`(sin x)/(1+ cos x)^2`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


`int "dx"/(9"x"^2 + 1)= ______. `


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals : `int cos^2x.dx`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


`int sqrt(1 + "x"^2) "dx"` =


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Fill in the Blank.

`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


Evaluate: ∫ |x| dx if x < 0


`int cos sqrtx` dx = _____________


`int (log x)/(log ex)^2` dx = _________


`int 1/(xsin^2(logx))  "d"x`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


`int sin^-1 x`dx = ?


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


`int secx/(secx - tanx)dx` equals ______.


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Evaluate the following

`int1/(x^2 +4x-5)dx`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate `int (1+x+x^2/(2!)) dx`


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×