Advertisements
Advertisements
Question
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Solution
Let I = `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Put sin x = t
∴ cosx dx = dt
∴ I = `int 3/(4t^2 + 4t - 1)dt`
I = `3/4 int 1/(t^2 + t - 1/4)dt`
I = `3/4 int 1/((t^2 + t + 1/4) - 1/4 - 1/4)dt`
I = `3/4 int 1/ ((t + 1/2)^2 - 1/2)dt`
I = `3/4 int 1/sqrt((t + 1/2)^2 - (1/sqrt2)^2)dt`
`[∵ int 1/(x^2 - a^2)dx = 1/(2a) log |(x - a)/(x + a)| + c]`
I = `3/4 xx 1/(2(1/sqrt2)) log |(t + 1/2 - 1/sqrt2)/(t + 1/2 + 1/sqrt2)| + c`
I = `3/(4sqrt2) log |(2sqrt2t + (2sqrt2)/2 - (2sqrt2)/sqrt2)/(2sqrt2t + (2sqrt2)/2 - (2sqrt2)/sqrt2)| + c`
I = `3/(4sqrt2) log |(2sqrt2t + sqrt2 - 2)/(2sqrt2t +sqrt2 + 2)| + c`
I = `3/(4sqrt2) log |(2sqrt2sin + sqrt2 - 2)/(2sqrt2sin +sqrt2 + 2)| + c`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Evaluate :`intxlogxdx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
cot x log sin x
Integrate the functions:
`(sin x)/(1+ cos x)^2`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
`int "dx"/(9"x"^2 + 1)= ______. `
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
`int sqrt(1 + "x"^2) "dx"` =
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate: ∫ |x| dx if x < 0
`int cos sqrtx` dx = _____________
`int (log x)/(log ex)^2` dx = _________
`int 1/(xsin^2(logx)) "d"x`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int sin^-1 x`dx = ?
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
`int secx/(secx - tanx)dx` equals ______.
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate `int (1+x+x^2/(2!)) dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).