Advertisements
Advertisements
Question
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Solution
`intsinx/sqrt(36-cos^2x)dx`
Substitute, cosx = t
∴ - sin x dx = dt
∴ sin x dx = - dt
The integral becomes
`int (-dt)/sqrt( 36 - t^2 )`
= `-intdt/sqrt( 6^2 - t^2 )`
= `-sin^-1( t/6 ) + C`
= `-sin^-1 .(cosx/6) + c`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
cot x log sin x
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate : `∫1/(3+2sinx+cosx)dx`
Solve: dy/dx = cos(x + y)
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of
Write a value of
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
`int 1/(cos x - sin x)` dx = _______________
`int sqrt(1 + sin2x) "d"x`
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int 1/(xsin^2(logx)) "d"x`
`int (7x + 9)^13 "d"x` ______ + c
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int x^3"e"^(x^2) "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
If f'(x) = `x + 1/x`, then f(x) is ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate `int1/(x(x-1))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`