Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Solution
Let I = `intsin(x - a)/cos(x + b).dx`
= `int(sin[(x + b) - (a + b)])/cos(x + b).dx`
= `int[sin(x + b) cos(a + b) - cos(x + b)sin(a + b))/cos(x + b).dx`
= `int[(sin(x + b) cos(a + b))/cos(x + b) - (cos(x + b)sin(a + b))/cos(x + b)].dx`
= `cos (a + b) int tan (x + b) dx - sin (a + b) int 1dx`
= cos (a + b) log | sec (x + b) | – x sin (a + b) + c.
APPEARS IN
RELATED QUESTIONS
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of
Write a value of
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate `int 1/((2"x" + 3))` dx
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int cos^7 x "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int dx/(1 + e^-x)` = ______
`int(5x + 2)/(3x - 4) dx` = ______
`int1/(4 + 3cos^2x)dx` = ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int sec^6 x tan x "d"x` = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int(log(logx) + 1/(logx)^2)dx` = ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate the following.
`int x sqrt(1 + x^2) dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int1/(x(x-1))dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int 1/(x(x-1))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`