Advertisements
Advertisements
Question
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Solution
\[\text{ Let I} = \int\frac{dx}{1 + 2 e^x}\]
\[\text{Dividing numerator and denominator by e}^x \]
\[ \Rightarrow I = \int\frac{\frac{1}{e^x}dx}{\frac{1}{e^x} + 2}\]
\[ = \int\frac{e^{- x} dx}{e^{- x} + 2}\]
\[\text{ Let e}^{- x} + 2 = t\]
\[ \Rightarrow - e^{- x}\text{ dx }= dt\]
\[ \Rightarrow e^{- x} \text{ dx }= - dt\]
\[ \therefore I = - \int\frac{dt}{t}\]
\[ = - \text{ log }\left| t \right| + C\]
\[ = - \text{ log }\left| e^{- x} + 2 \right| + C \left( \because t = e^{- x} + 2 \right)\]
APPEARS IN
RELATED QUESTIONS
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int x^x (1 + logx) "d"x`
`int(5x + 2)/(3x - 4) dx` = ______
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx