Advertisements
Advertisements
Question
Solution
\[\int \sqrt{2 x^2 + 3x + 4}\text{ dx}\]
\[ = \sqrt{2} \int \sqrt{x^2 + \frac{3}{2}x + 2} \text{ dx}\]
\[ = \sqrt{2} \int \sqrt{x^2 + \frac{3}{2}x + \left( \frac{3}{4} \right)^2 - \left( \frac{3}{4} \right)^2 + 2} \text{ dx}\]
\[ = \sqrt{2} \int \sqrt{\left( x + \frac{3}{4} \right)^2 - \frac{9}{16} + 2} \text{ dx}\]
\[ = \sqrt{2} \int \sqrt{\left( x + \frac{3}{4} \right)^2 + \left( \frac{\sqrt{23}}{4} \right)^2}\text{ dx}\]
\[ = \sqrt{2} \left[ \frac{x + \frac{3}{4}}{2} \sqrt{\left( x + \frac{3}{4} \right)^2 + \left( \frac{\sqrt{23}}{4} \right)^2} + \frac{23}{32}\text{ ln} \left| x + \frac{3}{4} + \sqrt{x^2 + \frac{3}{2}x + 2} \right| \right] + C \left[ \because \int\sqrt{x^2 + a^2} dx = \frac{1}{2}x\sqrt{x^2 + a^2} - \frac{1}{2} a^2 \text{ ln }\left| x + \sqrt{x^2 + a^2} \right| + C \right]\]
\[ = \sqrt{2} \left[ \left( \frac{4x + 3}{8} \right) \sqrt{x^2 + \frac{3}{2}x + 2} + \frac{23}{32}\text{ ln } \left| x + \frac{3}{4} + \sqrt{x^2 + \frac{3}{2}x + 2} \right| \right] + C\]
\[ = \left( \frac{4x + 3}{8} \right) \sqrt{2 x^2 + 3x + 4} + \frac{23\sqrt{2}}{32}\text{ ln }\left| x + \frac{3}{4} + \sqrt{x^2 + \frac{3}{2}x + 2} \right| + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Evaluate: `int 1/(x(x-1)) dx`
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int (sin4x)/(cos 2x) "d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int dx/(1 + e^-x)` = ______
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
`int x^3 e^(x^2) dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`