Advertisements
Advertisements
Question
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Solution
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = `underline(1/3)`
Explanation:
Let I = `int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" * (log "x")^3` + c
I = `int 1/"x"^3 [log "x"^"x"]^2 "dx" = int 1/"x"^3 ("x log x")^2 * "dx"`
`=int 1/"x"^3 * "x"^2 * (log "x")^2 "dx" = int 1/"x" (log "x")^2 * "dx"`
∴ Put log x = t
∴ `1/"x"` dx = dt
∴ I = `int "t"^2 * "dt"`
`= "t"^3/3 + "c"`
`= 1/3 (log "x")^3 + "c"`
∴ P = `1/3`
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`sin x/(1+ cos x)`
Write a value of
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate: `int log ("x"^2 + "x")` dx
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following.
`int1/(x^2+4x-5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).