Advertisements
Advertisements
Question
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Options
`2sqrt(1 - x) + "c"`
`-2sqrt(1 - x) + "c"`
`sqrtx + "c"`
x + c
Solution
The value of `int ("d"x)/(sqrt(1 - x)) "is" underlinebb(-2sqrt(1 - x) + c)`.
Explanation:
`int ("dx")/(sqrt(1 - x)) = int(1 - x)^((-1)/2)"dx"`
= `((1 - x)^((-1)/(2 + 1)))/(1/2) xx 1/("d"/("dx") (1 - x)) + "c"`
= `-2(1 - x)^(1/2) + "c"`
= `-2 sqrt(1 - x) + "c"`
APPEARS IN
RELATED QUESTIONS
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int logx/x "d"x`
`int x/(x + 2) "d"x`
`int cos^7 x "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int(log(logx) + 1/(logx)^2)dx` = ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int cos^3x dx` = ______.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate `int(1+x+x^2/(2!))dx`