Advertisements
Advertisements
प्रश्न
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
पर्याय
`2sqrt(1 - x) + "c"`
`-2sqrt(1 - x) + "c"`
`sqrtx + "c"`
x + c
उत्तर
The value of `int ("d"x)/(sqrt(1 - x)) "is" underlinebb(-2sqrt(1 - x) + c)`.
Explanation:
`int ("dx")/(sqrt(1 - x)) = int(1 - x)^((-1)/2)"dx"`
= `((1 - x)^((-1)/(2 + 1)))/(1/2) xx 1/("d"/("dx") (1 - x)) + "c"`
= `-2(1 - x)^(1/2) + "c"`
= `-2 sqrt(1 - x) + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`sin x/(1+ cos x)`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
`int (log x)/(log ex)^2` dx = _________
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
If f'(x) = `x + 1/x`, then f(x) is ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Write `int cotx dx`.
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int 1/(x(x-1))dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`