Advertisements
Advertisements
Question
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Solution
I = `int1/sqrt(3x^2 + 5x + 7)dx`
I = `1/sqrt3 int 1/sqrt(x^2 + (5x)/3 + 7/3)dx`
I = `1/sqrt3 int 1/sqrt((x^2 + (5x)/3 + 25/36) + (7/3 - 25/36))dx`
I = `1/sqrt3 int 1/sqrt((x^2 + (5x)/3 + (5/6)^2) + (59/36)).dx`
I = `1/sqrt3 int 1/sqrt((x + 5/6)^2 + (sqrt59/6)^2)dx`
I = `1/sqrt3 log |(x + 5/6) +sqrt((x + 5/2)^2 + (sqrt59/6)^2)| + c` ....`int1/sqrt(x^2 + a^2)dx = log|x + sqrt(x^2 + a^2)| + c`
I = `1/sqrt3 . log|(x + 5/6) + sqrt(x^2 + (5x)/3 + 7/3)| + c`
APPEARS IN
RELATED QUESTIONS
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
`(1+ log x)^2/x`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Solve: dy/dx = cos(x + y)
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int sqrt(1 + sin2x) "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int 1/(xsin^2(logx)) "d"x`
`int (7x + 9)^13 "d"x` ______ + c
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int x^3"e"^(x^2) "d"x`
`int1/(4 + 3cos^2x)dx` = ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
`int cos^3x dx` = ______.
Write `int cotx dx`.
`int (logx)^2/x dx` = ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`