Advertisements
Advertisements
Question
Integrate the functions:
`cos sqrt(x)/sqrtx`
Solution
Let I = `int (cos sqrtx)/sqrtx` dx
Put `sqrt x = t`
`1/(2 sqrt x)` dx = dt or `1/sqrt x` dx = 2 dt
Hence, `I = 2 int cos t dt`
`= 2 sin t + C = 2 sin sqrt x + C`
APPEARS IN
RELATED QUESTIONS
Evaluate :`intxlogxdx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
`int 1/(cos x - sin x)` dx = _______________
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int x^x (1 + logx) "d"x`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
`int sin^-1 x`dx = ?
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int(1+x+x^2/(2!))dx`