English

Choose the correct options from the given alternatives : ∫e2x+e-2xex⋅dx = - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =

Options

  • `e^x - (1)/(3e^(3x)) + c`

  • `e^x + (1)/(3e^(3x)) + c`

  • `e^-x + (1)/(3e^(3x)) + c`

  • `e^-x - (1)/(3e^(3x)) + c`

MCQ

Solution

`e^x - (1)/(3e^(3x)) + c`

[ Hint : `int (e^(2x) + e^-2x)/e^x*dx`

= `int e^x*dx + int e^(-3x)*dx`

= `e^x + (e^(-3x))/((- 3)) + c`

= `e^x - (1)/(3e^(3x)) + c`].

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Miscellaneous Exercise 3 [Page 150]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 1.2 | Page 150

RELATED QUESTIONS

Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


`int sqrt(1 + "x"^2) "dx"` =


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int cos sqrtx` dx = _____________


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int1/(4 + 3cos^2x)dx` = ______ 


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int ("d"x)/(x(x^4 + 1))` = ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate `int(1+ x + x^2/(2!)) dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×