English

Integrate the functions: 11+cotx - Mathematics

Advertisements
Advertisements

Question

Integrate the functions:

`1/(1 + cot x)`

Sum

Solution

Let `I = int 1/ (1 + cot x) dx = int 1/ (1 + cos x/sinx) dx`

`= int sin/(sin x + cos x) dx`

`= 1/2 int (2 sin x)/ (sinx + cos x) dx`

`= 1/2 int ((sin x +  cos x) - (cos x - sin x))/ ((sin x + cos x)) dx`

`= 1/2 int 1 dx - 1/2 int (cos x - sin x)/ (sin x + cos x) dx`

`= 1/2 x - 1/2 int (cos x - sin x)/ (sin x +  cos x) dx + C_1`

`I = x/2 - 1/2 I_1 + C_1`                  ........(i)

Where, `I_1 = int (cos x - sin x)/ (sin x +  cos x) dx`

Put sin x +  cos x = t 

⇒ (cos x - sin x) dx = dt

⇒ `I_1 = int dt/t = log |t| + C_2`

`= log |cos x + sin x| + C_2`              ......(ii)

From (i) and (ii), we get

⇒ `I = 1/2 x - 1/2 log |cos x + sin x| + C` 

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.2 [Page 305]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.2 | Q 32 | Page 305

RELATED QUESTIONS

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

tan2(2x – 3)


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


If f'(x) = `x + 1/x`, then f(x) is ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate:

`int sqrt((a - x)/x) dx`


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×