English

Integrate the following functions w.r.t.x: (5-3x)(2-3x)-12 - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`

Sum

Solution

Let I = `int(5 - 3x)(2 - 3x)^(-1/2).dx`

Put 2 – 3x = t

∴ –3dx = dt

∴ dx = `(-dt)/(3)`

Also, x = `(2 - t)/(3)`

∴ I = `int[5 - 3((2 - t)/3)]t^(-1/2).((-dt)/(3))`

= `-1/3(5 - 2 + t)t^(-1/2)dt`

= `-1/3 int(3 + t)t^(-1/2) dt`

= `-1/3 int(3t^(-1/2) + t^(1/2))dt`

= `-3/3 int t^(-1/2)dt - (1)/(3) int t^(1/2) dt`

= `-t^(1/2)/((1/2)) - (1)/(3).t^(3/2)/((3/2)) + c`

= `-2sqrt(2 - 3x) - (2)/(9)(2 - 3x)^(3/2) + c`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

APPEARS IN

RELATED QUESTIONS

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Evaluate :`intxlogxdx`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

cot x log sin x


Integrate the functions:

`((x+1)(x + logx)^2)/x`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Integrate the following functions w.r.t. x : tan5x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


`int sqrt(1 + "x"^2) "dx"` =


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate `int "x - 1"/sqrt("x + 4")` dx


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


Evaluate: `int 1/(sqrt("x") + "x")` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


Evaluate: `int log ("x"^2 + "x")` dx


`int x^2/sqrt(1 - x^6)` dx = ________________


`int cos^7 x  "d"x`


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int sec^6 x tan x   "d"x` = ______.


`int ("d"x)/(x(x^4 + 1))` = ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×