Advertisements
Advertisements
Question
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Solution
Let I = `int "x - 1"/sqrt("x + 4")` dx
= `int (("x + 4") - 5)/sqrt("x + 4")` dx
= `int (sqrt"x + 4" - 5/(sqrt "x + 4"))` dx
`= int [("x + 4")^(1/2) - 5("x + 4")^(- 1/2)]` dx
`= ("x + 4")^(3/2)/(3/2) - 5 ("x + 4")^(1/2)/(1/2)` + c
∴ I = `2/3 ("x + 4")^(3/2) - 10 sqrt("x + 4")` + c
APPEARS IN
RELATED QUESTIONS
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int (cos x)/(1 - sin x) "dx" =` ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
Evaluate `int (1+x+x^2/(2!))dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`