English

Evaluate the following integrals: ∫2x+1x2+4x-5.dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`

Sum

Solution

Let I = `int (2x + 1)/(x^2 + 4x - 5).dx`

Let 2x + 1 = `"A"[d/dx(x^2 + 4x - 5)] + "B"`

2x + 1 = A(2x + 4) + B

∴ 2x + 1 = 2Ax + (4A + B)

Comparing the coefficient of x and constant on both sides, we get,

2A = 2 and 4A + B = 1
∴ A = 1 and ∴  4(1) + B = 1
    ∴ B = 1 - 4
    ∴ B = - 3

∴ 2x + 1 = (2x + 1) - 3

∴ I = `int ((2x + 1) - 3)/(x^2 + 4x + 5)."dx"`

∴ I = `int (2x + 1)/(x^2 + 4x - 5)."dx" - 3 int (1)/(x^2 + 4x - 5)."dx"`

∴ I = `"I"_1 - 3"I"_2`

I1 is of the type `int (f'(x))/f(x).dx = log|f(x)| + c`

∴ `"I"_1 = log|x^2 + 4x - 5| + c_1`

∴  I2 = `int (1)/(x^2 + 4x - 5).dx`

∴  I2 = `int (1)/((x^2 + 4x + 4) - 4 - 5).dx`

∴  I2 = `int (1)/((x + 2)^2 - 3^2).dx`

∴  I2 = `1/(2 × 3) log |(x + 2 - 3)/(x + 2 + 3)| + c_2`

∴  I2 = `1/6 log |(x - 1)/(x + 5)| + c_2`

∴ I = `log|x^2 + 4x - 5| - 3 × 1/6 log|(x - 1)/(x + 5)| + c`.

∴ I = `log|x^2 + 4x - 5| - 1/2 log|(x - 1)/(x + 5)| + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (C) [Page 128]

APPEARS IN

RELATED QUESTIONS

Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

`1/(1 + cot x)`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Solve: dy/dx = cos(x + y)


Evaluate: `int (2y^2)/(y^2 + 4)dx`


\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : sin5x.cos8x


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


`int logx/(log ex)^2*dx` = ______.


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


`int sqrt(1 + sin2x)  "d"x`


`int logx/x  "d"x`


`int x^x (1 + logx)  "d"x`


`int cot^2x  "d"x`


`int (7x + 9)^13  "d"x` ______ + c


Evaluate `int(3x^2 - 5)^2  "d"x`


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int dx/(1 + e^-x)` = ______


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


`int cos^3x  dx` = ______.


Write `int cotx  dx`.


`int (logx)^2/x dx` = ______.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


Evaluate `int1/(x(x - 1))dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int 1/(x(x-1)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×