Advertisements
Advertisements
Question
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Solution
Let I = `int (2x + 1)/(x^2 + 4x - 5).dx`
Let 2x + 1 = `"A"[d/dx(x^2 + 4x - 5)] + "B"`
2x + 1 = A(2x + 4) + B
∴ 2x + 1 = 2Ax + (4A + B)
Comparing the coefficient of x and constant on both sides, we get,
2A = 2 | and | 4A + B = 1 |
∴ A = 1 | and | ∴ 4(1) + B = 1 |
∴ B = 1 - 4 | ||
∴ B = - 3 |
∴ 2x + 1 = (2x + 1) - 3
∴ I = `int ((2x + 1) - 3)/(x^2 + 4x + 5)."dx"`
∴ I = `int (2x + 1)/(x^2 + 4x - 5)."dx" - 3 int (1)/(x^2 + 4x - 5)."dx"`
∴ I = `"I"_1 - 3"I"_2`
I1 is of the type `int (f'(x))/f(x).dx = log|f(x)| + c`
∴ `"I"_1 = log|x^2 + 4x - 5| + c_1`
∴ I2 = `int (1)/(x^2 + 4x - 5).dx`
∴ I2 = `int (1)/((x^2 + 4x + 4) - 4 - 5).dx`
∴ I2 = `int (1)/((x + 2)^2 - 3^2).dx`
∴ I2 = `1/(2 × 3) log |(x + 2 - 3)/(x + 2 + 3)| + c_2`
∴ I2 = `1/6 log |(x - 1)/(x + 5)| + c_2`
∴ I = `log|x^2 + 4x - 5| - 3 × 1/6 log|(x - 1)/(x + 5)| + c`.
∴ I = `log|x^2 + 4x - 5| - 1/2 log|(x - 1)/(x + 5)| + c`.
APPEARS IN
RELATED QUESTIONS
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`1/(1 + cot x)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Solve: dy/dx = cos(x + y)
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
`int logx/(log ex)^2*dx` = ______.
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
`int sqrt(1 + sin2x) "d"x`
`int logx/x "d"x`
`int x^x (1 + logx) "d"x`
`int cot^2x "d"x`
`int (7x + 9)^13 "d"x` ______ + c
Evaluate `int(3x^2 - 5)^2 "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int dx/(1 + e^-x)` = ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
`int cos^3x dx` = ______.
Write `int cotx dx`.
`int (logx)^2/x dx` = ______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate `int1/(x(x - 1))dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int 1/(x(x-1)) dx`