English

Integrate the following with respect to the respective variable: x7x+1 - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following with respect to the respective variable:

`x^7/(x + 1)`

Sum

Solution

Let I = `int x^7/(x + 1)*dx`

= `int ((x^7 + 1) - 1)/(x + 1)*dx`

= `int ((x + 1)(x^6 - x^5 + x^4 - x^3 + x^2 - x + 1) - 1)/(x + 1)*dx`

= `int [x^6 - x^5 + x^4 - x^3 + x^2 - x + 1 - (1)/(x + 1)]*dx`

= `int x^6 dx - intx^5 dx + intx^4 dx - intx^3 dx + intx^2 dx - intx dx + int1 dx - int (1)/(x + 1) dx`

= `x^7/(7) - x^6/(6) + x^5/(5) - x^4/(4) + x^3/(3) - x^2/(2) + x - log|x + 1| + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Miscellaneous Exercise 3 [Page 150]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 2.2 | Page 150

RELATED QUESTIONS

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

`1/(1 - tan x)`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


The value of \[\int\frac{1}{x + x \log x} dx\] is


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals : `int sin x/cos^2x dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int "x" * "e"^"2x"` dx


`int x^2/sqrt(1 - x^6)` dx = ________________


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int(5x + 2)/(3x - 4) dx` = ______


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×