Advertisements
Advertisements
Question
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Solution
Let I = `int x^7/(x + 1)*dx`
= `int ((x^7 + 1) - 1)/(x + 1)*dx`
= `int ((x + 1)(x^6 - x^5 + x^4 - x^3 + x^2 - x + 1) - 1)/(x + 1)*dx`
= `int [x^6 - x^5 + x^4 - x^3 + x^2 - x + 1 - (1)/(x + 1)]*dx`
= `int x^6 dx - intx^5 dx + intx^4 dx - intx^3 dx + intx^2 dx - intx dx + int1 dx - int (1)/(x + 1) dx`
= `x^7/(7) - x^6/(6) + x^5/(5) - x^4/(4) + x^3/(3) - x^2/(2) + x - log|x + 1| + c`.
APPEARS IN
RELATED QUESTIONS
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`1/(1 - tan x)`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals : `int sin x/cos^2x dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int(5x + 2)/(3x - 4) dx` = ______
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`