English

Integrate the following functions w.r.t. x : (logx)ax - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `(logx)^n/x`

Sum

Solution

Let I = `int (logx)^n/x.dx`

Put log x = t.

∴ `(1)/x.dx = dt`

∴ I = `int t^n dt`

= `(t^(n + 1))/(n + 1) + c`

= `(1)/(n + 1).(logx)^(n + 1) + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`1/(1 - tan x)`


Integrate the functions:

`(1+ log x)^2/x`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


`int "dx"/(9"x"^2 + 1)= ______. `


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Integrate the following functions w.r.t. x : sin5x.cos8x


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Evaluate: ∫ |x| dx if x < 0


`int 1/(cos x - sin x)` dx = _______________


`int sqrt(1 + sin2x)  "d"x`


`int (sin4x)/(cos 2x) "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int(log(logx))/x  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


`int sin^-1 x`dx = ?


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int(1+ x + x^2/(2!)) dx`


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate `int (1+x+x^2/(2!)) dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int x^3 e^(x^2) dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×