Advertisements
Advertisements
Question
Integrate the functions:
`1/(x + x log x)`
Solution
Let I `= int 1/(x + x log x)` dx
or I `= int 1/(x (1+ log x)` dx
Put 1 + log x = t
`1/x` dx = dt
Hence, I `= int 1/t` dt
= log t + C
= log (1 + log x) + C
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`(1+ log x)^2/x`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
`int (dx)/(sin^2 x cos^2 x)` equals:
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Evaluate the following integrals : tan2x dx
Evaluate the following integrals:
`int x/(x + 2).dx`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int (7x + 9)^13 "d"x` ______ + c
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int x^3"e"^(x^2) "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int1/(4 + 3cos^2x)dx` = ______
`int (cos x)/(1 - sin x) "dx" =` ______.
`int sec^6 x tan x "d"x` = ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int (logx)^2/x dx` = ______.
`int secx/(secx - tanx)dx` equals ______.
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`