Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Solution
Let I = `int (sin6x)/(sin 10x sin 4x).dx`
= `int (sin (10x - 4x))/(sin 10x sin 4x).dx`
= `int (sin 10x cos 4x - cos 10x sin 4x)/(sin 10x sin 4x).dx`
= `int [(sin 10x cos 4x)/(sin 10x sin 4x) - (cos 10x sin 4x)/(sin 10x sin 4x)].dx`
= `int cot 4x dx - int cot 10x dx`
= `(1)/(4)log|sin4x| - (1)/(10)log|sin 10x| + c`.
APPEARS IN
RELATED QUESTIONS
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Integrate the functions:
`(1+ log x)^2/x`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Write a value of
Write a value of
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int 1/(xsin^2(logx)) "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int(5x + 2)/(3x - 4) dx` = ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int 1/(sinx.cos^2x)dx` = ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int (logx)^2/x dx` = ______.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate `int(1 + x + x^2/(2!))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate `int 1/(x(x-1))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`