Advertisements
Advertisements
Question
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Solution
f'(x) = x2 + 5 ...(Given)
∴ f(x) = ∫f'(x) dx
∴ f(x) = ∫(x2 + 5) dx
∴ f(x) = ∫ x2 dx + 5 ∫ dx
∴ f(x) =
Substitute x = 0, f(0) = −1 ...(Given)
∴ f(x) =
∴ f(0) =
∴ −1 = 0 + 0 + c
∴ c = −1
Substituting c = – 1 in (i), we get,
∴ f(x) =
∴ f(x) =
APPEARS IN
RELATED QUESTIONS
Evaluate :
Integrate the functions:
Evaluate:
Evaluate
Write a value of
Evaluate the following integrals :
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x :
Integrate the following functions w.r.t. x :
Evaluate
Evaluate the following.
Evaluate
Evaluate the following
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate