English

Evaluate the following integrals : ∫1-cos2xdx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`

Sum

Solution

`intsqrt(1 - cos 2x)dx`

= `intsqrt(2sin^2x)dx`

= `sqrt(2) int sin x dx`

= `-sqrt(2)cos x + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.1 [Page 102]

APPEARS IN

RELATED QUESTIONS

Evaluate :`intxlogxdx`


Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

sec2(7 – 4x)


Solve: dy/dx = cos(x + y)


\[\int\sqrt{x - x^2} dx\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


\[\int x \sin^3 x\ dx\]

`int "dx"/(9"x"^2 + 1)= ______. `


Integrate the following w.r.t. x : x3 + x2 – x + 1


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int sin 4x cos 3x dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Evaluate the following integrals : `int cos^2x.dx`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : tan5x


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


`int logx/(log ex)^2*dx` = ______.


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate `int (3"x"^2 - 5)^2` dx


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


Evaluate `int "x - 1"/sqrt("x + 4")` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int 1/(cos x - sin x)` dx = _______________


`int x/(x + 2)  "d"x`


`int(log(logx))/x  "d"x`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int ("d"x)/(x(x^4 + 1))` = ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


Write `int cotx  dx`.


`int (logx)^2/x dx` = ______.


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate `int(1 + x + x^2/(2!))dx`


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×