English

∫ √ X − X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{x - x^2} dx\]
Sum

Solution

\[\int \sqrt{x - x^2} \text{ dx }\]
\[ = \int \sqrt{- \left( x^2 - x \right)} \text{ dx }\]
\[ = \int \sqrt{- \left\{ x^2 - x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 \right\}} \text{ dx }\]
\[ = \int \sqrt{\left( \frac{1}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2} dx\]
\[ = \left( \frac{x - \frac{1}{2}}{2} \right) \sqrt{x - x^2} + \frac{1}{8} \sin^{- 1} \left( \frac{x - \frac{1}{2}}{\frac{1}{2}} \right) + C \left[ \because \int\sqrt{a^2 - x^2}dx = \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{- 1} \frac{x}{a} + C \right]\]
\[ = \left( \frac{2x - 1}{4} \right) \sqrt{x - x^2} + \frac{1}{8} \text{ sin}^{- 1} \left( 2x - 1 \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.28 [Page 154]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.28 | Q 3 | Page 154

RELATED QUESTIONS

Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Evaluate : `∫1/(3+2sinx+cosx)dx`


 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Evaluate: `int "e"^sqrt"x"` dx


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int logx/x  "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int(log(logx))/x  "d"x`


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Evaluate `int(1+ x + x^2/(2!)) dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×