English

Integrate the following functions w.r.t. x : 1x.logx.log(logx). - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.

Sum

Solution

Let I = `int (1)/(x.logx.log(logx)).dx`

= `int(1)/log(logx).(1)/(x.logx).dx`

Put log(log x) = t

∴ `(1)/logx.(1)/x.dx` = dt

∴ `(1)/(x.logx).dx` = dt

∴ I = `int (1)/t dt = log|t| + c`

= log|log (logx)| + c.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

APPEARS IN

RELATED QUESTIONS

Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


`int logx/(log ex)^2*dx` = ______.


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate `int 1/("x" ("x" - 1))` dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Evaluate: `int "x" * "e"^"2x"` dx


`int sqrt(1 + sin2x)  "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


`int cot^2x  "d"x`


`int cos^7 x  "d"x`


Evaluate `int(3x^2 - 5)^2  "d"x`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int dx/(1 + e^-x)` = ______


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


Find `int dx/sqrt(sin^3x cos(x - α))`.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate `int1/(x(x - 1))dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate `int 1/(x(x-1)) dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×