Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Solution
Let I = `int (1)/(x.logx.log(logx)).dx`
= `int(1)/log(logx).(1)/(x.logx).dx`
Put log(log x) = t
∴ `(1)/logx.(1)/x.dx` = dt
∴ `(1)/(x.logx).dx` = dt
∴ I = `int (1)/t dt = log|t| + c`
= log|log (logx)| + c.
APPEARS IN
RELATED QUESTIONS
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
`int logx/(log ex)^2*dx` = ______.
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int sqrt(1 + sin2x) "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int cot^2x "d"x`
`int cos^7 x "d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int dx/(1 + e^-x)` = ______
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate `int1/(x(x - 1))dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate `int 1/(x(x-1)) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`