Advertisements
Advertisements
Question
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Solution
`I=∫(x+2)/sqrt(x^2+5x+6)dx `
Multiplying and dividing by 2, we get
`I=1/2∫(2x+4)/sqrt(x^2+5x+6)dx `
Adding and subtracting 1 to the numerator, we get:
`I=1/2∫(2x+4+1-1)/sqrt(x^2+5x+6)dx`
` I=1/2∫(2x+5)/sqrt(x2+5x+6)dx -1/2∫1/sqrt(x^2+5x+6)dx`
`"Let" I_1=1/2∫(2x+5)/sqrt(x^2+5x+6)dx `
Put x2+5x+6=t
Differentiating with respect to x, we get:
(2x+5)dx=dt
`I_1=intdt/sqrtt`
`I_1=2sqrtt+c`
`I_1=2sqrt(x^2+5x+6)+c`
`1/2 int "dt"/sqrt t =∫1/sqrt(x^2+5x+(5/2)^2-(5/2)^2+6)dx`
`1/2 int "dt"/sqrt t - 1/2 int "dx"/sqrt(x^2+5x+6 + (5/2)^2 - 25/4)dx`
`1/2 "t"^(1/2)/(1/2) int 1/sqrt((x+5/2)^2-(1/2)^2)dx`
`= 1/2 xx 2 xx "t"^(1/2) - 1/2 |"log" x + 5/2 + sqrt (x^2 + 5x + 6)| + "C"`
`= sqrt (x^2 + 5x + 6) - 1/2 "log" |sqrt (x^2 + 5x + 6)| + "C"`
APPEARS IN
RELATED QUESTIONS
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate: `int 1/(x(x-1)) dx`
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals:
`int x/(x + 2).dx`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int (7x + 9)^13 "d"x` ______ + c
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int ("d"x)/(x(x^4 + 1))` = ______.
`int secx/(secx - tanx)dx` equals ______.
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
`int "cosec"^4x dx` = ______.
Evaluate:
`int sin^2(x/2)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`