English

Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1. - Mathematics

Advertisements
Advertisements

Question

Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.

Sum

Solution

`dy/dx=1+x+y+xy`

`dy/dx` = 1 + x + y + xy

`dy/dx = 1( 1 + x ) + y ( 1 + x)`

`dy/dx=(1+x)(1+y)`        

`dy/(1+y)=(1+x)dx`

Integrating both sides:

`intdy/(1+y)=int(1+x)dx`

`log|1+y|=x+x^2/2+C`

y = 0 when  x = 1     (given)

`log1=1+1/2+C`

`C=−3/2`

`⇒log|1+y|=x+x^2−3/2` is the required solution.

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) All India Set 1

RELATED QUESTIONS

Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The number of arbitrary constants in the particular solution of a differential equation of third order is


(x2 + 1) dy + (2y − 1) dx = 0


(x3 − 2y3) dx + 3x2 y dy = 0


x2 dy + (x2 − xy + y2) dx = 0


\[\frac{dy}{dx} + y = 4x\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×