Advertisements
Advertisements
Question
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Solution
`dy/dx=1+x+y+xy`
`dy/dx` = 1 + x + y + xy
`dy/dx = 1( 1 + x ) + y ( 1 + x)`
`dy/dx=(1+x)(1+y)`
`dy/(1+y)=(1+x)dx`
Integrating both sides:
`intdy/(1+y)=int(1+x)dx`
`log|1+y|=x+x^2/2+C`
y = 0 when x = 1 (given)
`log1=1+1/2+C`
`C=−3/2`
`⇒log|1+y|=x+x^2−3/2` is the required solution.
APPEARS IN
RELATED QUESTIONS
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The number of arbitrary constants in the particular solution of a differential equation of third order is
(x2 + 1) dy + (2y − 1) dx = 0
(x3 − 2y3) dx + 3x2 y dy = 0
x2 dy + (x2 − xy + y2) dx = 0
\[\frac{dy}{dx} + y = 4x\]
\[\frac{dy}{dx} + 5y = \cos 4x\]
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.