English

Solve the differential equation dy/dx=(y+√(x2+y2))/x - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`

Solution

`dy/dx=(y+sqrt(x^2+y^2))/x`

Put y = vx

`therefore dy/dx=v+x (dv)/dx`

`therefore (1) becomes, v+x (dv)/dx=(vx+sqrt(x^2+v^2x^2))/x`

`therefore v+x (dv)/dx =v+sqrt(1+v^2)`

`therefore 1/sqrt(1+v^2) dv=1/x dx`

Integrating, we get,

`int 1/sqrt(1+v^2) dv=int 1/x dx+c_1`

`therefore log |v+sqrt(1+v^2)|=log|x|+logc, where c_1=logc`

`therefore (y+sqrt(x^2+y^2))/x=cx`

`(y+sqrt(x^2+y^2))=cx^2 ` is the general solution

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (October)

RELATED QUESTIONS

If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Find the differential equation representing the curve y = cx + c2.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


\[\frac{dy}{dx} = \left( x + y \right)^2\]


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\frac{dy}{dx} + 2y = \sin 3x\]


\[\frac{dy}{dx} + y = 4x\]


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


The member of arbitrary constants in the particulars solution of a differential equation of third order as


Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×