Advertisements
Advertisements
Question
\[\frac{dy}{dx} + 5y = \cos 4x\]
Solution
We have,
\[\frac{dy}{dx} + 5y = \cos 4x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{where }P = 15\text{ and }Q = \cos 4x\]
\[ \therefore I . F . = e^{\int P\ dx }\]
\[ = e^{\int 5dx} \]
\[ = e^{5x} \]
\[\text{Multiplying both sides of (1) by }I.F. = e^{5x},\text{ we get}\]
\[e^{5x} \left( \frac{dy}{dx} + 5y \right) = e^{5x} \cos 4x \]
\[\Rightarrow e^{5x} \frac{dy}{dx} + 5 e^{5x} y = e^{5x} \cos 4x\]
Integrating both sides with respect to `x`, we get
\[y e^{5x} = \int e^{5x} \cos 4x dx + C\]
\[ \Rightarrow y e^{5x} = I + C . . . . . \left( 2 \right)\]
Where,
\[I = \int e^{5x} \cos 4x dx . . . . . \left( 3 \right)\]
\[ \Rightarrow I = e^{5x} \int\cos 4x dx - \int\left[ \frac{d e^{5x}}{dx}\int\cos 4x dx \right]dx\]
\[ \Rightarrow I = \frac{e^{5x} \sin 4x}{4} - \frac{5}{4}\int e^{5x} \sin 4x dx\]
\[ \Rightarrow I = \frac{e^{5x} \sin 4x}{4} - \frac{5}{4}\left[ e^{5x} \int\sin 4x dx - \int\left( \frac{d e^{5x}}{dx}\int\sin 4x dx \right)dx \right]\]
\[ \Rightarrow I = \frac{e^{5x} \sin 4x}{4} - \frac{5}{4}\left[ - \frac{e^{5x} \cos 4x}{4} + \frac{5}{4}\int e^{5x} \cos 4x dx \right]\]
\[ \Rightarrow I = \frac{e^{5x} \sin 4x}{4} + \frac{5 e^{5x} \cos 4x}{16} - \frac{25}{16}\int e^{5x} \cos 4x dx\]
\[ \Rightarrow I = \frac{e^{5x} \sin 4x}{4} + \frac{5 e^{5x} \cos 4x}{16} - \frac{25}{16}I ............\left[\text{From (3)} \right]\]
\[ \Rightarrow \frac{41}{16}I = \frac{e^{5x} \sin 4x}{4} + \frac{5 e^{5x} \cos 4x}{16}\]
\[ \Rightarrow \frac{41}{16}I = \frac{e^{5x}}{16}\left( 4\sin 4x + 5\cos 4x \right)\]
\[ \Rightarrow I = \frac{e^{5x}}{41}\left( 4\sin 4x + 5\cos 4x \right) . . . . . . . . \left( 4 \right)\]
From (2) and (4) we get
\[ \Rightarrow y e^{5x} = \frac{e^{5x}}{41}\left( 4\sin 4x + 5\cos 4x \right) + C\]
\[ \Rightarrow y = \frac{4}{41}\left( \sin 4x + \frac{5}{4}\cos 4x \right) + C e^{- 5x} \]
\[\text{Hence, }y = \frac{4}{41}\left(\sin 4x + \frac{5}{4}\cos 4x \right) + C e^{- 5x}\text{ is the required solution.}\]
APPEARS IN
RELATED QUESTIONS
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The number of arbitrary constants in the particular solution of a differential equation of third order is
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
\[\frac{dy}{dx} = \left( x + y \right)^2\]
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
\[\frac{dy}{dx} - y \tan x = e^x\]
(x2 + 1) dy + (2y − 1) dx = 0
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
\[\frac{dy}{dx} + 2y = \sin 3x\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
The solution of differential equation coty dx = xdy is ______.