English

The general solution of the differential equation dydxdydx+yx = 1 is ______. - Mathematics

Advertisements
Advertisements

Question

The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.

Fill in the Blanks

Solution

The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is `x^2/2 + "C"`.

Explanation:

xy = `x^2/2 + "c"`

I.F. = `"e"^(int 1/x "d"x)`

= elogx

= x and the solution is y.

x = `int x * 1  "d"x = x^2/2 + "C"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Solved Examples [Page 190]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Solved Examples | Q 22. (viii) | Page 190

RELATED QUESTIONS

Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

x (e2y − 1) dy + (x2 − 1) ey dx = 0


(1 + y + x2 y) dx + (x + x3) dy = 0


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]


Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


tan–1x + tan–1y = c is the general solution of the differential equation ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


The member of arbitrary constants in the particulars solution of a differential equation of third order as


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×