Advertisements
Advertisements
Question
Evaluate: `int "x" * "e"^"2x"` dx
Solution
Let I = `int "x" * "e"^"2x"` dx
`= "x" int "e"^"2x" "dx" - int["d"/"dx" ("x") int "e"^"2x" * "dx"]` dx
`= "x" * "e"^"2x"/2 - int 1 * "e"^"2x"/2` dx
`= 1/2 "xe"^"2x" - 1/2 int "e"^"2x"` dx
`= 1/2 "x e"^"2x" - 1/2 * "e"^"2x"/2` + c
∴ I = `1/4 "e"^"2x" ("2x" - 1)` + c
APPEARS IN
RELATED QUESTIONS
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`x/(e^(x^2))`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int 1/("x" log "x")`dx
`int 1/(xsin^2(logx)) "d"x`
`int cos^7 x "d"x`
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int(1 + x + x^2 / (2!))dx`