Advertisements
Advertisements
Question
Evaluate the following.
`int 1/("x" log "x")`dx
Solution
Let I = `int 1/("x" log "x")`dx
Put log x = t
∴ `1/"x" "dx" = "dt'`
∴ I = `int 1/"t"` dt = log |t| + c
∴ I = log |log x| + c
Alternate Method:
Let I = `int 1/("x" * log "x")`dx
`= int (1//"x" "dx")/(log "x")`
∴ I = log |log x| + c .....`[because int ("f" '("x"))/("f"("x")) "dx" = log |"f"("x")| + "c"]`
APPEARS IN
RELATED QUESTIONS
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
tan2(2x – 3)
Write a value of
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
`int cot^2x "d"x`
`int sin^-1 x`dx = ?
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate `int 1/(x(x-1)) dx`