Advertisements
Advertisements
Question
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Solution
\[\int\left( \frac{x^3 - 1}{x^2} \right) dx\]
\[ = \int\left( \frac{x^3}{x^2} - \frac{1}{x^2} \right)dx\]
\[ = \int\left( x - x^{- 2} \right)dx\]
\[ = \frac{x^2}{2} - \frac{x^{- 2 + 1}}{- 2 + 1} + C\]
\[ = \frac{x^2}{2} + \frac{1}{x} + C\]
APPEARS IN
RELATED QUESTIONS
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int logx/x "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int dx/(1 + e^-x)` = ______
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`